CHIOCCIOLA DI TEODORO

 

 

 

Utilizzando Cabri, abbiamo riprodotto

la costruzione classica, nota come spirale di Teodoro

(Teodoro di Cirene matematico della scuola pitagorica, V sec. a.C.), 

che permette di costruire geometricamente le radici quadrate dei numeri interi,

a partire da un triangolo rettangolo isoscele, avente cateti di lunghezza unitaria.

Estraendo le radici di numeri naturali, non quadrati perfetti, si ottengono numeri 

che non sono numeri razionali, ma, una volta costruiti sulla spirale di Teodoro, 

possono essere riportati sulla retta numerica.

 


 

Guarda il video

 


Trovi la versione Geogebra, interattiva e scaricabile,  Qui